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We introduce a model for fractures in quenched disordered media. This model has a deterministic extremal
dynamics, driven by the energy function of a network of spritBern Hamiltonian. The breakdown is the
result of the cooperation between the external field and the quenched disorder. This model can be considered
as describing the low-temperature limit for crack propagation in solids. To describe the memory effects in this
dynamics and then to study the resistance properties of the system we realized some numerical simulations of
the model. The model exhibits interesting geometric and dynamical properties, siitbng reductiorof the
fractal dimension of the clusters and of their backbone, with respect to the case in which thermal fluctuations
dominate. This result can be explained by a recently introduced theoretical tocicaeesming enhancement
due to memory effects induced by the quenched disof@d1063-651X98)03604-9

PACS numbgs): 05.40:+j, 02.50—r, 62.20.Mk

[. INTRODUCTION ate more clearly the various scaling regimes of these struc-
tures. Usually, with this boundary condition, two different
In recent years, many models have been proposed to dehases, called, respectively, tBealing regimeand steady
scribe the formation of cracks in different kind of materials state are presenf10].
[1-4]. They are inspired by the study of nonequilibrium frac- We will see that in the quenched version of the BM
tal growth processes such as the dielectric breakdown modéQBM), because of the very strong screening on the growth
(DBM) [5] and diffusion-limited aggregation6]. These process, the first regimévhere many different branches
models are based on two different mechanisms for the fracsompete during the growths nearly absent. In fact, most of
ture growth:(i) a stochasticeffect due to the thermal fluc- the growth dynamics develops during the steady state, where
tuations in the medium, driven by an external field, @hda  only one branch survives and the cluster is statistically self-
deterministicdynamics, when the main source of random-similar with well-defined fractal properties. Together with
ness is the quenched disorder of the medilike in the the fractal dimension, the backbone and chemical distance
invasion percolatiorilP) model[7]], the thermal fluctuations exponents characterize completely the fractures produced by
being negligiblei.e., low-temperature limijt our model.
A very interesting model, belonging to the first class, is We compare our results with those obtained previously
the Born modelBM) [8,9], where minimization of the elas- for the stochastic version of the BI®], showing that the
tic energy is used to compute the driving field. This modelfractal dimension of the clusters and of the backbone, in
for fracture propagation is the analog of the DBM for La- similar conditions, arstrongly reducedWe explain this as a
placian growth. It describes the fracture’s propagation as aonsequence of the absence of thermal fluctuations; the
stochastic process, where the probabilistic mechanism reprguenched disorder producesemory effectgiving screening
sents growth instabilities, like, for example, density fluctua-effects similar to those of 1PL2]. On the other hand, in the
tions in a gas. In this approach the quenched disorder of theame conditions, the screening effect produced by the modu-
medium is negligible. lation of the driving field gives a fractal dimension much
In this paper we want to consider the limit of low tem- smaller than the IP, which is the limit of the model in which
perature for the BM, where the driving field cooperates withthere is no external driving field or it is constant. The same
guenched disorder to produce the breakdown patterns. Thgualitative result has been found recently, both numerically
guenched disorder can be thought to represent the effect, aiamd analytically, for the quenched version of the DBM].
mesoscopic scale, of defects of the breaking layer. In thiTherefore, the numerical results found here for the QBM
version of the model, at each time step the growing bond isupport the belief that this screening enhancement is a gen-
selected deterministically, i.e., the bond with the smalleseral property of all deterministic models with quenched dis-
ratio between the local driving field and the quenched disorerder and a driving field.
der grows. The system is a two-dimensional triangular lattice The distribution of the quenched disorder related to the
of springs. We apply to two parallel boundaries of the systengrown (broken sites(acceptance profijes also studied for
a uniaxial tension and fixed boundary condition to the othersdifferent values of the model parameters. This distribution
In this way we obtain directed, crack patterns, orthogonal taeaches, during the evolution, an asymptotic shape. In the
the applied stress. The system has two independent lengtase of IP, the asymptotic distribution is a step function, with
scales: the height and the widthL. This allows us to evalu- the discontinuity at the value of quenched disorder coinci-
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FIG. 1. Connectivity condition. Broken bonds are indicated by
dashed lines, while interface bonds are indicated by thick lines.

steplike shape of the acceptation profile indicates that the
dynamics develops avalanches with a scale-invariant distri-
bution[11,12. _ FIG. 2. Uniaxial tension applied to the lattice.

In our model, the presence of the stress field, however,
does not allow the presence of a critical threshold in this
asymptotic distribution of quenched disorder. As a conse- o ] g : .
quence, the dynamics does not develop scale-invariant avgylt Wherej is the nearest neighbor of This condition
lanches, but these avalanches have a typical[di2e3. A  Yields a series of equations for thgs that can be solved by
very important universality relation can be written, which imposing the boundary condition. The initial boundary con-
explains, in terms of the dependence of the fractal propertiedition is a uniform dilation on the left- and right-hand sides
on the parameters of the model, the cooperation between tieé the sample. This boundary condition changes, taking into
driving field and the quenched disorder in developing such @ccount all the springs broken during the evolution of the
fractal structure. crack.

The paper is organized as follows. In Sec. Il the model is Concerning the rule of growth, we have chosen a deter-
introduced and compared with the corresponding stochasti@inistic rule selecting the bond to break according to its
model. The details for the realization of simulations are“generalized elongation’vﬁﬁz. The particular rule explained
specified. In Sec. Il we describe our numerical results forin the following equations has been inspired by analogies
the fractal properties of the clusters, the backbone, and th@ith the DBM. We think ofVilylj2 as a field acting on the
chemical distance, for the roughness exponent of the chemspring between siteisand j. Since the system is character-
cal distance, and for the statistical effective distribution ofized by the presence of random quenched deféetsre-
quenched variables on the growth interface. In Sec. IV th&ented as a quenched random npisge assign to each
universality relation is demonstrated and a theoretical tool i$pring a random numbex; ; extracted by the probability
introduced to explain the two screening effects in producingiensity
fractal properties. Finally, in Sec. V we discuss the results
and draw some conclusions.

dent with the critical point of classic percolatipn,14]. This \</

For any equilibrium staté ;,V(U; ,u;)=0 Vi must re-

a _
po(Xi,j)ZXa—Xﬁj L (2
II. MODEL sup

The BM describes the medium as a discrete set of springgvhere the parameter (ae[0,0)) modulates the importance
The equilibrium state is obtained by imposing minimizationof the disorder in the mechanical properties of the system
of the energy, while dynamics of fracture is given by assign-and the variables are defined in the rap@gs,,]. From Eq.
ing a rule of growth. Concerning the equilibrium state, we(2) one can derive the mean valge) of the disorder as-
imagine breaking only one spring at a time to model a syssigned to the bonds:
tem of slowly developing fractures and after every break-
down a new equilibrium state is computed. We describe the (x)= fxsupdx X Po(X) = ix
energy of the system by means of the same potential energy. 0 R a+17suP
This elastic potential energy consists of two different terms,
describing, respectively, a central force and a noncentraA “fragile” material corresponds to small values af ({x)
force contribution: ~0), while a “rigid” one corresponds to big values af
({(X)=Xsyp. Then we define a set of dynamical variables

)

1 1 - - A - s
V= EiEj Vi,J':EiEj (a=B)[(u—up -1 1%+ Blui—u;]%,
D)

Yi,i(O=A; (X, (4)

) A where A; j(t)=1/V, ;(t)Y2 Then, at each time step, the
whereu; is the displacement vector for siter; ; is the unity  spring with the smallest valug ;(t) on the growth interface
vector betweem andj, « and B are force constants, and the of the fracture is broken.
sum is over the nearest-neighbor sites connected by an un- It is customary to modulate the influence of the stress field
broken spring. on the growth dynamics with the introduction of a parameter
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FIG. 3. Crack pattern generated by our model,
with the parametergy=1.0,a=1.0, «=1.0, and
B=0.5.

3,

7. In this case the formula forA;; becomesA, ;(t) are computed, and new bonds are added to the perimeter. By
=1N, (1) 72 When =0 there is no field and the model iterating this dynamics, one obtains structures such as that
has the same dynamics as invasion percolafic8], while  shown in Fig. 3.

7= corresponds to an infinite strength of the field and the The most important quantity characterizing the structures
cluster is a one-dimensional straight line. In fact, the disordegenerated by the model is the fractal dimendion For each
effects are negligible when compared to an infinite field.value of L, we have generated a set of 20 realizations and
Some details have to be specified since, in principle, theitomputed the fractal dimension by the box-counting method.
variation could affect the fractal propertig®15,16. Due to  This has been done for different values@ix. In fact, in the

the vectorial nature of Eq(1) a triangular lattice is more equilibrium conditionﬁ{g_}V(Ji)zo we deal only with the
appropriate to model the medium. In fact, for a squared lat- '

rt';\tio Bla. For this reason, we decided to vagyand keep

tice when5=0, the system behaves as a set of mdependena:l_ Furthermore, we performed the same analysis also by

planes without a connection between each other. For thi\§ar ing 7 (the parameter modulating the effects of the field
reason we will follow[9,17], by considering only triangular ying 7 P g

lattices. Furthermore, the growth interface at any time isanda (the parameter modulating the disordeDur resuits

given by the set of unbroken bonds that are nearest neighbo?‘ge shown in Tables I-Il. .
to the cluster of broken bondse., the perimeter of the frac- . The model shows a continuous dependence of the fractal
ture clustey. This corresponds to the implementation of ad'me’?S'O” on the parametg, as found in[9] .for thg sto-
connectivity condition(Fig. 1). chastic BM. The dgpendence of th_e fractgl dimension on the
parameters; anda is different and interesting. In fact, from
our simulations we see that the fractal dimension actually
IIl. NUMERICAL SIMULATIONS depends only on the productza This introduces a precise
relationship between the indices describing the properties of
the medium and the properties of the stress field.

If we compare this result with the case of invasion perco-
lation, where the field is absent and the fractal dimension
the distribution function of Eq(2) with x,,=0.5. In fact, a does not depend on the value f(7,12], we see that the
constant strain equal to 0.5 lattice units is applied in thdntroduction of the stress field breaks the symmetry with re-

horizontal directior(see Fig. 2. At each time step, the stress SPECt t0a, leading to less universal “critical” properties. In
field over the interface bonds is computed. Then the bonc€C- [V we present an analytical demonstration of this uni-

with the smallest valug; ; is broken, the new stress fields versal property.

We performed several realizations on systems of kize
XL (L=64,128), in triangular geometrywith periodic
boundary conditions on the top and botior quenched
variablex; ; is assigned to each bondj. Thex; ;'s follow

TABLE |. Behavior of the fractal dimension of the QBM for TABLE II. Fractal dimension of the QBM for different values
different values ofg, with a=1 and»=1, for sizesL =64,128. of » and a for clusters of sizeL=64. The values of the other
parameters ar@=0.5 anda=1.

B D, (L=64) D (L=128)

D ,a=1 a D =1la
0.0 1.15+0.03 1.14-0.02 K r (ma=1) 1 (7=1a)
0.005 1.18-0.03 1.16-0.02 0.5 1.36-0.03 0.5 1.330.03
0.05 1.26-0.03 1.17-0.02 1.0 1.21+0.03 1.0 1.2+0.03
0.5 1.22-0.02 1.26-0.02 2.0 1.13-0.03 2.0 1.15:0.03

5 1.26-0.02 1.24-0.02 3.0 1.16£0.03 3.0 1.16:0.03
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TABLE lll. Fractal dimension of the QBM for different values tivity properties of the aggregates is given by the exponents
of » anda for clusters of size=128. The values of the other ruling the scaling of two subsets of the clusters: the chemical

parameters ar=0.5 anda=1. distance and the backbone. The chemical distance is the
shortest path between the two ends of the aggregate and
U D¢ (7,2=1) a Dy (7=1a) shows interesting self-affine properties. The backbone is ob-
0.5 1.42+0.02 05 1.46-0.02 ta_ined by cutting from the cluster {ill thg tips and _the dan-
gling loops connected to the chemical distaisee Fig. 4.
1.0 1.20-0.02 1.0 1.26:0.02 . . .
20 1.15-0.02 20 1.16-0.02 This part of the cluster influences the macroscopic transport
' ' ' ' ' ' roperties of the medium, while the chemical distance gives
3.0 1.110.02 3.0 1.16:0.02 P ’

the shape of the line separating the system into two parts
after the breakdown. It is worth pointing out that in models
with a scalar external field, such as the DB and QDBM
[13], no closed loops are allowed and the backbone trivially
coincides with the chemical distanf@).

As it can be noted, for fixed, the fractal dimension of
the fracture cluster, for any value gf>0, is less than the IP

one. This is due to the fac; that f@;r>0,.ther¢ IS a screening To determine the backbone and the chemical distance we
effect related to the physical stress field, in addition to thefollowed a method used ifi9], based on the topological
screening related to the memory effects of the quenched_ i yroperties of the clusters. As a’n example, in Figs. 5 and 6 we
orde_r. Moreoyer, our numerical results show clearly that n how, respectively, the backbone and the chemical distance
:ragllel rg_atenal_(smallﬁl, <)f>:0) .thg fractur_es _have a big we obtain for the cluster of Fig. 3. In Table IV we collect the
ractal dimension, while In a rig| r.naterlla(b|g a, ) results of a box-counting analysis. The backbone fractal di-
:.XS“P) _the fractures _tend to be stralght_lm_es with fractal mension is significantly larger than one, although quite
dimension near 1. This result sounds qualitatively reasonablg, o iier than for the stochastic Born model. Instead, the

from an experimental point of view. A fragile material could ¢, -1 dimension of the chemical distance is 1 for bhth
correspond to a material with many impurities that lower its:64 andL =128

resistance to rupture, allowing many bonds to be broken. A

rigid material could represent a material without impurities distance, which gives the scaling of the mean-squared

at zero temperature, in which fractures are straight lineg, o widthW(l) of a self-affine path with respect to its
a_llong the d'.r ectlon_ of maximum st.ress.. However, a.quam'tal'engthl [18]. In our case, the path develops vertically and its
tive comparison with experiments is still not accessible since ngth is measured along the vertical direction, while the
it needs a clear connection between what we call quench '

. . . ; . T idth is computed along the horizontal direction. Then, if
disorder in our model, which we believe to give a description, P 9

of the system at a mesoscopic scale, and the microsco iéj) Is the x coordinate of a point on a chemical distance
. y P ' pwhosey coordinate i, W(l) is defined as
disorder in real systems.

In Sec. IV we will propose an analytical explanation for
our numerical findings. The same qualitative results have W(l)=
been found recently for a similar model: the quenched di-
electric breakdown moddéQDBM) [13]. This suggests that _
the dependence on the productaofind 7 of the dynamics where angular brack_ets re_present a mean over all port|qns of
and the geometry of the patterns plus@eening enhance- length| of the chemical dlsta@e and over different realiza-
ment effect are general properties of all the deterministictions of quenched disorder aridis the mean horizontal po-
models with the driving field in the presence of quenchedsition. For a self-affine pathV(l)~1X holds. In Fig. 7 we
disorder. show the scaling behavior ak/%(1) versusl for clusters of

A further characterization of the topological and connec-size L=128 and for different values of the parametgrA

We then studied the roughness exponerdf the chemi-

1/2

, ®

j0+l o
<j_2j [i(j)—i]2>

FIG. 4. Schematic representation of an aggredlafe), its backbongmiddle), and its chemical distandgight).
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FIG. 5. Backbone of the cluster shown in
Fig. 3.

least-squares fit, reported in the figure, gives for values of of a(x) for the different values ofy. The presence of the
ranging over an order of magnitudifom 0.2 to 3) values stress field prevents the dynamics from developing scale-
that seem quite stable within error bars. Fpr3 we gety  invariant avalanches and this is reflected in the absence of a
=0.62+0.03, for n=1.0 we gety=0.64+0.03, and foryp critical threshold ina(x) [12]. However, as the value of
=0.2 we gety=0.66+0.03. becomes smaller and the role of the stress field becomes less
The independence gf from 7% (i.e., from the producaz) relevant, one can see thafx) seems to develop a disconti-
indicates a very important universality property of the model.nuity. What we expect is that in the limi#=0 one recovers
In particular, the values we find are quite similar to that ofthe IP dynamics. Also in this case we obtain results that
the directed percolationy=v/»=0.6%5 ... [19]), so we agree with those obtained for the QDBM3]. In fact, a
can suppose that, concerning the chemical distance, tr@®mmon picture, which we describe in a longer paper, can be
model is in the same universality class of directed percolaused to study both mode]20].

tion.

_ The evolut_|on of the dynamlcs towards an asymptqtlc sta- V. THEORETICAL RESULTS

tionary state is characterized by the acceptance prafitg.

It gives the rate of acceptatigselection by the growth pro- In this section we present some theoretical results con-

ces$ for the values of the quenched variables associated witberning the universality properties of the model and the ex-
the grown bonds, on the intervpk,x+dx]. We have per- planation of the screening effects that give rise to such fractal
formed a set of ten realizations of size %1212, for breakdown patterns. To demonstrate that all the dynamical
=1.0,2.0,3.0a=1 and 8=0.5. This allowed us to follow and geometrical properties of the model depend only on the
the time evolution ofa(x) up to t=500, where the productan instead of on the two parameters separately, con-
asymptotic state is reached. In Fig. 8 we show the final shapsider the generic variable

FIG. 6. Chemical distance of the cluster of
Fig. 3.
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TABLE IV. Behavior of the backbone fractal dimensioB)
and D¢) of chemical distance fractal dimension, wigth=0.5, «
=1, »=1, anda=1, for clusters of sizé. =64 andL =128.

L Dg D¢
64 1.070.02 1.06-0.02
128 1.16:0.02 1.06£0.02
v ()= _ K (6)
i,] ’
Vi (H)7?
wherex; ; is extracted from the density function
a .
Po(Xi j) = Xa—Xia,j ' (7

sup
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0.8

‘ o — e QBMn=1.0, a=1
E‘Jﬁ. & - -8 QBMn=2.0, a=1
A—4 QBMn=3.0, a=1

o6 M *

FIG. 8. Acceptation profiles for the variablgsassociated with

Now perform the transformation of the quenched variables the grown bonds, for different values gf aftert=>500 time steps.

z ;=[x ;1% (8)

The absence of a threshold value &fix) implies a smooth growth
(not by avalanchgs Moreover, one can note a dependence on the
value of 7, suggesting that in the limiy=0 we recover the IP

Introducing Eq.(8) in Eq. (7), one can note that the vari- dynamics with a threshold.

ables z; ; are uniformly distributed between 0 am,,

=x§up. So the density function of the new variables will This equation shows that all the dynamical and geometrical

depend on the parametaronly through the value of,y,
which is unique for all variables. Introducing E@) in Eq.
(6), we obtain

l/a
4ij

Vi ()@ ©

yi,j(t)=

properties of the model depend only on the produgt as
asserted before.

Now we switch to the explanation of how the two screen-
ing effects(the geometrical one and the probabilistic pne
cooperate in the model during the dynamical evolution. In
doing so we will briefly introduce a generalized version of
the run time StatisticéRTS), which was introduced to study
extremal dynamics in quenched disordered media, such as IP

Finally, as the dynamics is extremal it does not change if14,17. The RTS approach consists in a transformation of
instead of the variableg ;(t) we consider as bond variables the deterministic quenched extremal dynamics in a stochastic

U (D) =Ly, ()]P=—d (10

Vi (e

10
= mean-square-width L=128, =3
---- f(h=a 1*, y=0.62, Ax=0.03
10° & o mean-square-width L=128, n=1
——~ g()=b 17, y=0.64, Ax=0.03
[ + mean-square-width L=128, 1=0.2
e h()= ¢ 1%, 3=0.66, Ax=0.03
g 0
100 =
- =
1 f/ P -
10 E -
10 :

1 10
1

FIG. 7. Scaling behavior of the square mean horizontal width

W2(l) of the chemical distance for clusters of size=128 and
different values ofy.

one through the introduction of effective, time-dependent,
density functions for the dynamical variablgs; . The role

of these densities is to store information on the past growth
history of the systenj12,14]. This approach allows us to
have a well-defined growth probability distribution at any
time step and an updating rule of the effective density func-
tions after any elementary growth event.

To explain simply the observed screening effects, suppose
there are only two bonds 1 and 2 in the interface at tige
and considea=1 and»>0. Let the quenched variables of
the two bonds be, respectively; and x,, which are uni-
formly distributed between 0 and 1. Moreover, let the related
stress fields be, respectivelyz;, =Vi(t)”? and Ey
=V,(t) "2, where, for example, without loss of generality,
E11,=Eay, Then we haveyi'to=xi/Ei'tO for i=1,2 uni-
formly distributed between 0 and&{to, i.e.,

Pi,(Y)=Eiy, =12 11
piyto(y) represents the effective density of the barat time
to. We want now to calculate the probabili}:yLto that bond

1 grows atty+1, i.e., thatyl,t0<y2’t0. This probability is
given by
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deriving Eqg.(14) we made the hypothesis that the stress field
of bond 2 remains constant. In general, this is not the case; in
fact, when a bond grows at timet the stress field of a bond

j remaining on the growth-interface decreases, B¢y, 1
<E; ;. This leads to the second kind of screening: the geo-
metric one. In fact, supposirigzytoﬂs Eayy We obtain

@ (b)

Eay
0
Yoi,+1= %yZ’to:AZt(ﬁ Y21, (15

Note that, asA,; +1=<1, we haveyy; ;1Y . From Egs.

(14) and (15) we obtain the effective probability density of
S the dynamical variable of the bond 2:

2.+
0

- | Eot+1E1t, y,

' 1
) T ¥, A2,t0+1

l,t+?
0

& M1ty

2.t +1
)

P2t +1(Y2)=

2,t+1
0

Azty+1 1
<y,<
Er, 2 E2fp+1’
(16)

E
2tg+1

FIG. 9. (a) Density function of bond 2 at timg and(b) density
function p2,t0+1(y2) of bond 2 at timety+ 1, under the hypothesis
of constant stress field. This density concentrates more on high
values.(c) If one adds the geometric screening of the stress fieldwhere now we account for the decrease of the stress field in
the p2; +1(y2) concentrates even more on higher values, reflectinghe variabley,. Since, by definitionAz ;1> 1, this function
the cooperation of the two kinds of screening. is more concentrated towards the high values of the variable
than in the previous cagé€ig. 9c)]. Thus the growth prob-

M1ty

1Eqy, 1Bz, Ear, 1 ability of bond 2 further decreases with respect to 8dj).
K1t~ |, dyiEqy, y dyzEar, =1~ 2E, =5 This reflects the presence of both screening effects: the geo-
! ' 12 metric one due to the decreasing stress fields of “old” pe-

rimeter bonds and the temporal one produced by memory

Now we suppose that this is the real growth event and comeffects. In this way we have shown simply how the two
pute the new probability density,, . 1(y,) of the variable kinds of screening effects add the evolution of the dynamics

- .. .. leading to a fractal structure with small fractal dimensions.
Y21,+1 conditioned to that event. For the sake of simplicity, Theg generalization of these arguments to the case in
we assume that the stress field of bond 2 remains constaninich the interface is composed of many bonds with differ-

.., Ya1,+1= Y21, By applying the rules of conditional prob- ent initial probability densities leads to the formulation of the
ability, we obtain RTS for extremal dynamics with quenched disorder and a

driving field, which has been introduced|[ib3] to study the

y2 roblem of the electric discharge in disordered dielectric sys-

P2t +1(Y2) = P2y, (Y2) fo dy1P1 (Y1) 6(1/Eqs — Y1), fem_ g Y

(13
o , o V. CONCLUSIONS
where the functiory is the step function and indicates that

the variabley; must be smaller than Ei,to- By introducing
Eq. (11) in Eq. (13), we obtain

We have introduced and studied a model for the dynamics
of fractures in a quenched random medium. The model ex-
hibits interesting properties, for example, a strong reduction

E,, Eq; 1 of its fractal dimension with respect to the case of a domi-
_~0 o b, O<y,<— nating thermal noiséstochastic dynamicf9]) and a rough-
K1t El,to ness exponent for the chemical distance whose value seems
p2,t0+1(y2): E (149 to be independent on the model parameters. Moreover, the
2t 1 <y,< ) fractal dimension of the fractures depends continuously on
My, Eig, E2to the material properties, represented in the model by a power-

law distribution of quenched disorder with a tunable param-
etera. This is, from an experimental point of view, reason-
probability density ofy, at timety+1 is more concentrated able. In a situation in which thermal fluctuations of the lattice
towards the high values of the variable than at titgeat  are irrelevant, the only source of noise, and thus of fractal
which it was uniform. If we introduce this density in Eq. properties, in the growth process is the intrinsic quenched
(12), we see that the growth probability of bond 1 increaseglisorder of the sample§mpurities, vacancies, ejc.Our
and by normalization the growth probability of bond 2 de- model, however, is still too idealized to allow a quantitative
creases. This is what was called before the probabilisticomparison with experiments.

screening effect, which is nothing but a memory effect. In It would be interesting to compute analytically the fractal

This function is represented in Fig(® and the effective
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dimension of this model by using the fixed scale transformaics with thermal noisgregimes by the introduction of a tem-
tion (FST) [21] approach, after having mapped its dynamicsperaturelike parametér that can tune the transition between
onto a stochastic one, with the RTS method. The mapping ithe two regimegq22]. This could represent a further step
in fact possible, but the approximations one has to use in thesward a more realistic description of fracture propagation in
FST approach give rise to quite poor numerical results, asolids. One interesting property of this generalized model is
reported in a longer paper on this subjg2d]. that in the high-temperature limit, the level of approximation
The model can be further generalized. A research direcef the FST method becomes excellg2t]. This could allow

tion we are presently following concerns the unification ofus to get a good estimation of the low-temperature fractal
the low-temperaturédeterministic, extremal dynamics with dimension by an extrapolation of the values we get in the
qguenched disordgand high-temperaturgstochastic dynam-  high-temperature case.
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