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Dynamics of fractures in quenched disordered media
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We introduce a model for fractures in quenched disordered media. This model has a deterministic extremal
dynamics, driven by the energy function of a network of springs~Born Hamiltonian!. The breakdown is the
result of the cooperation between the external field and the quenched disorder. This model can be considered
as describing the low-temperature limit for crack propagation in solids. To describe the memory effects in this
dynamics and then to study the resistance properties of the system we realized some numerical simulations of
the model. The model exhibits interesting geometric and dynamical properties, with astrong reductionof the
fractal dimension of the clusters and of their backbone, with respect to the case in which thermal fluctuations
dominate. This result can be explained by a recently introduced theoretical tool as ascreening enhancement
due to memory effects induced by the quenched disorder.@S1063-651X~98!03604-6#

PACS number~s!: 05.40.1j, 02.50.2r, 62.20.Mk
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I. INTRODUCTION

In recent years, many models have been proposed to
scribe the formation of cracks in different kind of materia
@1–4#. They are inspired by the study of nonequilibrium fra
tal growth processes such as the dielectric breakdown m
~DBM! @5# and diffusion-limited aggregation@6#. These
models are based on two different mechanisms for the f
ture growth:~i! a stochasticeffect due to the thermal fluc
tuations in the medium, driven by an external field, and~ii ! a
deterministicdynamics, when the main source of rando
ness is the quenched disorder of the medium@like in the
invasion percolation~IP! model@7##, the thermal fluctuations
being negligible~i.e., low-temperature limit!.

A very interesting model, belonging to the first class,
the Born model~BM! @8,9#, where minimization of the elas
tic energy is used to compute the driving field. This mod
for fracture propagation is the analog of the DBM for L
placian growth. It describes the fracture’s propagation a
stochastic process, where the probabilistic mechanism re
sents growth instabilities, like, for example, density fluctu
tions in a gas. In this approach the quenched disorder of
medium is negligible.

In this paper we want to consider the limit of low tem
perature for the BM, where the driving field cooperates w
quenched disorder to produce the breakdown patterns.
quenched disorder can be thought to represent the effect
mesoscopic scale, of defects of the breaking layer. In
version of the model, at each time step the growing bon
selected deterministically, i.e., the bond with the small
ratio between the local driving field and the quenched dis
der grows. The system is a two-dimensional triangular lat
of springs. We apply to two parallel boundaries of the syst
a uniaxial tension and fixed boundary condition to the othe
In this way we obtain directed, crack patterns, orthogona
the applied stress. The system has two independent le
scales: the heighth and the widthL. This allows us to evalu-
571063-651X/98/57~4!/3878~8!/$15.00
e-

el

c-

-

l

a
re-
-
he

he
t a
is
is
t

r-
e

s.
o
th

ate more clearly the various scaling regimes of these st
tures. Usually, with this boundary condition, two differe
phases, called, respectively, thescaling regimeand steady
state, are present@10#.

We will see that in the quenched version of the B
~QBM!, because of the very strong screening on the gro
process, the first regime~where many different branche
compete during the growth! is nearly absent. In fact, most o
the growth dynamics develops during the steady state, wh
only one branch survives and the cluster is statistically s
similar with well-defined fractal properties. Together wi
the fractal dimension, the backbone and chemical dista
exponents characterize completely the fractures produce
our model.

We compare our results with those obtained previou
for the stochastic version of the BM@9#, showing that the
fractal dimension of the clusters and of the backbone,
similar conditions, arestrongly reduced. We explain this as a
consequence of the absence of thermal fluctuations;
quenched disorder producesmemory effectsgiving screening
effects similar to those of IP@12#. On the other hand, in the
same conditions, the screening effect produced by the mo
lation of the driving field gives a fractal dimension muc
smaller than the IP, which is the limit of the model in whic
there is no external driving field or it is constant. The sa
qualitative result has been found recently, both numerica
and analytically, for the quenched version of the DBM@13#.
Therefore, the numerical results found here for the QB
support the belief that this screening enhancement is a
eral property of all deterministic models with quenched d
order and a driving field.

The distribution of the quenched disorder related to
grown ~broken! sites~acceptance profile! is also studied for
different values of the model parameters. This distribut
reaches, during the evolution, an asymptotic shape. In
case of IP, the asymptotic distribution is a step function, w
the discontinuity at the value of quenched disorder coin
3878 © 1998 The American Physical Society
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57 3879DYNAMICS OF FRACTURES IN QUENCHED . . .
dent with the critical point of classic percolation@7,14#. This
steplike shape of the acceptation profile indicates that
dynamics develops avalanches with a scale-invariant di
bution @11,12#.

In our model, the presence of the stress field, howe
does not allow the presence of a critical threshold in t
asymptotic distribution of quenched disorder. As a con
quence, the dynamics does not develop scale-invariant
lanches, but these avalanches have a typical size@12,13#. A
very important universality relation can be written, whic
explains, in terms of the dependence of the fractal proper
on the parameters of the model, the cooperation between
driving field and the quenched disorder in developing suc
fractal structure.

The paper is organized as follows. In Sec. II the mode
introduced and compared with the corresponding stocha
model. The details for the realization of simulations a
specified. In Sec. III we describe our numerical results
the fractal properties of the clusters, the backbone, and
chemical distance, for the roughness exponent of the che
cal distance, and for the statistical effective distribution
quenched variables on the growth interface. In Sec. IV
universality relation is demonstrated and a theoretical too
introduced to explain the two screening effects in produc
fractal properties. Finally, in Sec. V we discuss the resu
and draw some conclusions.

II. MODEL

The BM describes the medium as a discrete set of spri
The equilibrium state is obtained by imposing minimizati
of the energy, while dynamics of fracture is given by assig
ing a rule of growth. Concerning the equilibrium state, w
imagine breaking only one spring at a time to model a s
tem of slowly developing fractures and after every bre
down a new equilibrium state is computed. We describe
energy of the system by means of the same potential ene
This elastic potential energy consists of two different term
describing, respectively, a central force and a noncen
force contribution:

V5
1

2(i , j Vi , j5
1

2(i , j ~a2b!@~uW i2uW j !• r̂ i , j #
21b@uW i2uW j #

2,

~1!

whereuW i is the displacement vector for sitei , r̂ i , j is the unity
vector betweeni and j , a andb are force constants, and th
sum is over the nearest-neighbor sites connected by an
broken spring.

FIG. 1. Connectivity condition. Broken bonds are indicated
dashed lines, while interface bonds are indicated by thick lines
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For any equilibrium state¹W $uW i %
V(uW i ,uW j )50 ; i must re-

sult where j is the nearest neighbor ofi . This condition
yields a series of equations for theuW i ’s that can be solved by
imposing the boundary condition. The initial boundary co
dition is a uniform dilation on the left- and right-hand sid
of the sample. This boundary condition changes, taking i
account all the springs broken during the evolution of t
crack.

Concerning the rule of growth, we have chosen a de
ministic rule selecting the bond to break according to
‘‘generalized elongation’’Vi , j

1/2. The particular rule explained
in the following equations has been inspired by analog
with the DBM. We think of Vi , j

1/2 as a field acting on the
spring between sitesi and j . Since the system is characte
ized by the presence of random quenched defects~repre-
sented as a quenched random noise!, we assign to each
spring a random numberxi , j extracted by the probability
density

p0~xi , j !5
a

xsup
a

xi , j
a21 , ~2!

where the parametera „aP@0,̀ )… modulates the importanc
of the disorder in the mechanical properties of the syst
and the variables are defined in the range@0,xsup#. From Eq.
~2! one can derive the mean value^x& of the disorder as-
signed to the bonds:

^x&5E
0

xsup
dx x p0~x!5

a

a11
xsup. ~3!

A ‘‘fragile’’ material corresponds to small values ofa (^x&
.0), while a ‘‘rigid’’ one corresponds to big values ofa
(^x&.xsup). Then we define a set of dynamical variables

yi , j~ t !5Ai , j~ t !xi , j , ~4!

where Ai , j (t)51/Vi , j (t)
1/2. Then, at each time step, th

spring with the smallest valueyi , j (t) on the growth interface
of the fracture is broken.

It is customary to modulate the influence of the stress fi
on the growth dynamics with the introduction of a parame

FIG. 2. Uniaxial tension applied to the lattice.
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FIG. 3. Crack pattern generated by our mod
with the parametersh51.0, a51.0, a51.0, and
b50.5.
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h. In this case the formula forAi , j becomes Ai , j (t)
51/Vi , j (t)

h/2. When h50 there is no field and the mode
has the same dynamics as invasion percolation@13#, while
h5` corresponds to an infinite strength of the field and
cluster is a one-dimensional straight line. In fact, the disor
effects are negligible when compared to an infinite fie
Some details have to be specified since, in principle, th
variation could affect the fractal properties@8,15,16#. Due to
the vectorial nature of Eq.~1! a triangular lattice is more
appropriate to model the medium. In fact, for a squared
tice whenb50, the system behaves as a set of independ
planes without a connection between each other. For
reason we will follow@9,17#, by considering only triangula
lattices. Furthermore, the growth interface at any time
given by the set of unbroken bonds that are nearest neigh
to the cluster of broken bonds~i.e., the perimeter of the frac
ture cluster!. This corresponds to the implementation of
connectivity condition~Fig. 1!.

III. NUMERICAL SIMULATIONS

We performed several realizations on systems of sizL
3L (L564,128), in triangular geometry~with periodic
boundary conditions on the top and bottom!. A quenched
variablexi , j is assigned to each bondi , j . The xi , j ’s follow
the distribution function of Eq.~2! with xsup50.5. In fact, a
constant strain equal to 0.5 lattice units is applied in
horizontal direction~see Fig. 2!. At each time step, the stres
field over the interface bonds is computed. Then the b
with the smallest valueyi , j is broken, the new stress field

TABLE I. Behavior of the fractal dimension of the QBM fo
different values ofb, with a51 andh51, for sizesL564,128.

b D f (L564) D f (L5128)

0.0 1.1560.03 1.1460.02
0.005 1.1860.03 1.1660.02
0.05 1.2060.03 1.1760.02
0.5 1.2260.02 1.2060.02
5 1.2660.02 1.2460.02
e
r
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are computed, and new bonds are added to the perimete
iterating this dynamics, one obtains structures such as
shown in Fig. 3.

The most important quantity characterizing the structu
generated by the model is the fractal dimensionD f . For each
value of L, we have generated a set of 20 realizations a
computed the fractal dimension by the box-counting meth
This has been done for different values ofb/a. In fact, in the
equilibrium condition¹W $uW i %

V(uW i)50 we deal only with the

ratio b/a. For this reason, we decided to varyb and keep
a51. Furthermore, we performed the same analysis also
varyingh ~the parameter modulating the effects of the fie!
and a ~the parameter modulating the disorder!. Our results
are shown in Tables I–III.

The model shows a continuous dependence of the fra
dimension on the parameterb, as found in@9# for the sto-
chastic BM. The dependence of the fractal dimension on
parametersh anda is different and interesting. In fact, from
our simulations we see that the fractal dimension actu
depends only on the product ah. This introduces a precise
relationship between the indices describing the propertie
the medium and the properties of the stress field.

If we compare this result with the case of invasion perc
lation, where the field is absent and the fractal dimens
does not depend on the value ofa @7,12#, we see that the
introduction of the stress field breaks the symmetry with
spect toa, leading to less universal ‘‘critical’’ properties. In
Sec. IV we present an analytical demonstration of this u
versal property.

TABLE II. Fractal dimension of the QBM for different value
of h and a for clusters of sizeL564. The values of the othe
parameters areb50.5 anda51.

h D f (h,a51) a Df (h51,a)

0.5 1.3660.03 0.5 1.3360.03
1.0 1.2160.03 1.0 1.2160.03
2.0 1.1360.03 2.0 1.1560.03
3.0 1.1060.03 3.0 1.1060.03
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57 3881DYNAMICS OF FRACTURES IN QUENCHED . . .
As it can be noted, for fixeda, the fractal dimension of
the fracture cluster, for any value ofh.0, is less than the IP
one. This is due to the fact that forh.0, there is a screening
effect related to the physical stress field, in addition to
screening related to the memory effects of the quenched
order. Moreover, our numerical results show clearly that i
fragile material~small a, ^x&.0) the fractures have a bi
fractal dimension, while in a rigid material~big a, ^x&
.xsup) the fractures tend to be straight lines with frac
dimension near 1. This result sounds qualitatively reason
from an experimental point of view. A fragile material cou
correspond to a material with many impurities that lower
resistance to rupture, allowing many bonds to be broken
rigid material could represent a material without impuriti
at zero temperature, in which fractures are straight li
along the direction of maximum stress. However, a quant
tive comparison with experiments is still not accessible si
it needs a clear connection between what we call quenc
disorder in our model, which we believe to give a descript
of the system at a mesoscopic scale, and the microsc
disorder in real systems.

In Sec. IV we will propose an analytical explanation f
our numerical findings. The same qualitative results h
been found recently for a similar model: the quenched
electric breakdown model~QDBM! @13#. This suggests tha
the dependence on the product ofa andh of the dynamics
and the geometry of the patterns plus ascreening enhance
ment effect are general properties of all the determinis
models with the driving field in the presence of quench
disorder.

A further characterization of the topological and conne

TABLE III. Fractal dimension of the QBM for different value
of h and a for clusters of sizeL5128. The values of the othe
parameters areb50.5 anda51.

h D f (h,a51) a Df (h51,a)

0.5 1.4260.02 0.5 1.4060.02
1.0 1.2060.02 1.0 1.2060.02
2.0 1.1560.02 2.0 1.1660.02
3.0 1.1160.02 3.0 1.1060.02
e
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tivity properties of the aggregates is given by the expone
ruling the scaling of two subsets of the clusters: the chem
distance and the backbone. The chemical distance is
shortest path between the two ends of the aggregate
shows interesting self-affine properties. The backbone is
tained by cutting from the cluster all the tips and the da
gling loops connected to the chemical distance~see Fig. 4!.
This part of the cluster influences the macroscopic trans
properties of the medium, while the chemical distance gi
the shape of the line separating the system into two p
after the breakdown. It is worth pointing out that in mode
with a scalar external field, such as the DBM@5# and QDBM
@13#, no closed loops are allowed and the backbone trivia
coincides with the chemical distance@9#.

To determine the backbone and the chemical distance
followed a method used in@9#, based on the topologica
properties of the clusters. As an example, in Figs. 5 and 6
show, respectively, the backbone and the chemical dista
we obtain for the cluster of Fig. 3. In Table IV we collect th
results of a box-counting analysis. The backbone fractal
mension is significantly larger than one, although qu
smaller than for the stochastic Born model@9#. Instead, the
fractal dimension of the chemical distance is 1 for bothL
564 andL5128.

We then studied the roughness exponentx of the chemi-
cal distance, which gives the scaling of the mean-squa
lateral width W( l ) of a self-affine path with respect to it
lengthl @18#. In our case, the path develops vertically and
length is measured along the vertical direction, while t
width is computed along the horizontal direction. Then,
i ( j ) is the x coordinate of a point on a chemical distan
whosey coordinate isj , W( l ) is defined as

W~ l !5F K (
j 5 j 0

j 01 l

@ i ~ j !2 ī #2L G1/2

, ~5!

where angular brackets represent a mean over all portion
length l of the chemical distance and over different realiz
tions of quenched disorder andī is the mean horizontal po
sition. For a self-affine pathW( l ); l x holds. In Fig. 7 we
show the scaling behavior ofW2( l ) versusl for clusters of
size L5128 and for different values of the parameterh. A
FIG. 4. Schematic representation of an aggregate~left!, its backbone~middle!, and its chemical distance~right!.
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FIG. 5. Backbone of the cluster shown i
Fig. 3.
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least-squares fit, reported in the figure, gives for values oh
ranging over an order of magnitude~from 0.2 to 3) values
that seem quite stable within error bars. Forh53 we getx
50.6260.03, for h51.0 we getx50.6460.03, and forh
50.2 we getx50.6660.03.

The independence ofx from h ~i.e., from the productah)
indicates a very important universality property of the mod
In particular, the values we find are quite similar to that
the directed percolation (x5n i /n u50.625 . . . @19#!, so we
can suppose that, concerning the chemical distance,
model is in the same universality class of directed perco
tion.

The evolution of the dynamics towards an asymptotic s
tionary state is characterized by the acceptance profilea(x).
It gives the rate of acceptation~selection by the growth pro
cess! for the values of the quenched variables associated
the grown bonds, on the interval@x,x1dx#. We have per-
formed a set of ten realizations of size 5123512, for h
51.0,2.0,3.0,a51 andb50.5. This allowed us to follow
the time evolution of a(x) up to t5500, where the
asymptotic state is reached. In Fig. 8 we show the final sh
l.
f

he
-

-

th

pe

of a(x) for the different values ofh. The presence of the
stress field prevents the dynamics from developing sc
invariant avalanches and this is reflected in the absence
critical threshold ina(x) @12#. However, as the value ofh
becomes smaller and the role of the stress field becomes
relevant, one can see thata(x) seems to develop a discont
nuity. What we expect is that in the limith50 one recovers
the IP dynamics. Also in this case we obtain results t
agree with those obtained for the QDBM@13#. In fact, a
common picture, which we describe in a longer paper, can
used to study both models@20#.

IV. THEORETICAL RESULTS

In this section we present some theoretical results c
cerning the universality properties of the model and the
planation of the screening effects that give rise to such fra
breakdown patterns. To demonstrate that all the dynam
and geometrical properties of the model depend only on
productah instead of on the two parameters separately, c
sider the generic variable
f
FIG. 6. Chemical distance of the cluster o
Fig. 3.
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57 3883DYNAMICS OF FRACTURES IN QUENCHED . . .
yi , j~ t !5
xi , j

Vi , j~ t !h/2
, ~6!

wherexi , j is extracted from the density function

p0~xi , j !5
a

xsup
a

xi , j
a21 . ~7!

Now perform the transformation of the quenched variabl

zi , j5@xi , j #
a. ~8!

Introducing Eq.~8! in Eq. ~7!, one can note that the var
ables zi , j are uniformly distributed between 0 andzsup

5xsup
a . So the density function of the new variables w

depend on the parametera only through the value ofzsup,
which is unique for all variables. Introducing Eq.~8! in Eq.
~6!, we obtain

yi , j~ t !5F zi , j

Vi , j~ t !~ah!/2G 1/a

. ~9!

Finally, as the dynamics is extremal it does not chang
instead of the variablesyi , j (t) we consider as bond variable

ui , j~ t !5@yi , j~ t !#a5
zi , j

Vi , j~ t !~ah!/2
. ~10!

FIG. 7. Scaling behavior of the square mean horizontal wi
W2( l ) of the chemical distance for clusters of sizeL5128 and
different values ofh.

TABLE IV. Behavior of the backbone fractal dimension (DB)
and (DC) of chemical distance fractal dimension, withb50.5, a
51, h51, anda51, for clusters of sizeL564 andL5128.

L DB DC

64 1.0760.02 1.0060.02
128 1.1060.02 1.0060.02
if

This equation shows that all the dynamical and geometr
properties of the model depend only on the productah, as
asserted before.

Now we switch to the explanation of how the two scree
ing effects~the geometrical one and the probabilistic on!
cooperate in the model during the dynamical evolution.
doing so we will briefly introduce a generalized version
the run time Statistics~RTS!, which was introduced to study
extremal dynamics in quenched disordered media, such a
@14,12#. The RTS approach consists in a transformation
the deterministic quenched extremal dynamics in a stocha
one through the introduction of effective, time-depende
density functions for the dynamical variablesyi , j . The role
of these densities is to store information on the past gro
history of the system@12,14#. This approach allows us to
have a well-defined growth probability distribution at an
time step and an updating rule of the effective density fu
tions after any elementary growth event.

To explain simply the observed screening effects, supp
there are only two bonds 1 and 2 in the interface at timet0
and considera51 andh.0. Let the quenched variables o
the two bonds be, respectively,x1 and x2, which are uni-
formly distributed between 0 and 1. Moreover, let the rela
stress fields be, respectively,E1,t0

5V1(t)h/2 and E2,t0
5V2(t)h/2, where, for example, without loss of generalit
E1,t0

>E2,t0
. Then we haveyi ,t0

5xi /Ei ,t0
for i 51,2 uni-

formly distributed between 0 and 1/Ei ,t0
, i.e.,

pi ,t0
~y!5Ei ,t0

i 51,2. ~11!

pi ,t0
(y) represents the effective density of the bondi at time

t0. We want now to calculate the probabilitym1,t0
that bond

1 grows att011, i.e., thaty1,t0
,y2,t0

. This probability is
given by

h

FIG. 8. Acceptation profiles for the variablesxi associated with
the grown bonds, for different values ofh, after t5500 time steps.
The absence of a threshold value fora(x) implies a smooth growth
~not by avalanches!. Moreover, one can note a dependence on
value of h, suggesting that in the limith50 we recover the IP
dynamics with a threshold.
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m1,t0
5E

0

1/E1,t0
dy1E1,t0Ey1

1/E2,t0
dy2E2,t0

512
E2,t0

2E1,t0

>
1

2
.

~12!

Now we suppose that this is the real growth event and c
pute the new probability densityp2,t011(y2) of the variable

y2,t011 conditioned to that event. For the sake of simplici

we assume that the stress field of bond 2 remains cons
i.e., y2,t0115y2,t0

. By applying the rules of conditional prob
ability, we obtain

p2,t011~y2!5p2,t0
~y2!E

0

y2
dy1p1,t0

~y1!u~1/E1,t0
2y1!,

~13!

where the functionu is the step function and indicates th
the variabley1 must be smaller than 1/E1,t0

. By introducing
Eq. ~11! in Eq. ~13!, we obtain

p2,t011~y2!55
E2,t0

E1,t0

m1,t0

y2 , 0<y2<
1

E1,t0

E2,t0

m1,t0

,
1

E1,t0

<y2<
1

E2,t0
.

~14!

This function is represented in Fig. 9~b! and the effective
probability density ofy2 at time t011 is more concentrated
towards the high values of the variable than at timet0, at
which it was uniform. If we introduce this density in Eq
~12!, we see that the growth probability of bond 1 increas
and by normalization the growth probability of bond 2 d
creases. This is what was called before the probabili
screening effect, which is nothing but a memory effect.

FIG. 9. ~a! Density function of bond 2 at timet0 and~b! density
function p2,t011(y2) of bond 2 at timet011, under the hypothesis
of constant stress field. This density concentrates more on
values.~c! If one adds the geometric screening of the stress fi
the p2,t011(y2) concentrates even more on higher values, reflec
the cooperation of the two kinds of screening.
-
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ic

deriving Eq.~14! we made the hypothesis that the stress fi
of bond 2 remains constant. In general, this is not the case
fact, when a bondi grows at timet the stress field of a bond
j remaining on the growth-interface decreases, i.e.,Ej ,t11
<Ej ,t . This leads to the second kind of screening: the g
metric one. In fact, supposingE2,t011<E2,t0

, we obtain

y2,t0115
E2,t0

E2,t011
y2,t0

5A2,t011y2,t0
. ~15!

Note that, asA2,t011<1, we havey2,t011<y2,t0
. From Eqs.

~14! and ~15! we obtain the effective probability density o
the dynamical variable of the bond 2:

p2,t011~y2!55
E2,t011E1,t0

m1,t0

y2

A2,t011
, 0<y2<

A2,t011

E1,t0

E2,t011

m1,t0

,
A2,t011

E1,t0

<y2<
1

E2,t011
,

~16!

where now we account for the decrease of the stress fiel
the variabley2. Since, by definition,A2,t011.1, this function
is more concentrated towards the high values of the varia
than in the previous case@Fig. 9~c!#. Thus the growth prob-
ability of bond 2 further decreases with respect to Eq.~14!.
This reflects the presence of both screening effects: the
metric one due to the decreasing stress fields of ‘‘old’’ p
rimeter bonds and the temporal one produced by mem
effects. In this way we have shown simply how the tw
kinds of screening effects add the evolution of the dynam
leading to a fractal structure with small fractal dimension

The generalization of these arguments to the case
which the interface is composed of many bonds with diff
ent initial probability densities leads to the formulation of t
RTS for extremal dynamics with quenched disorder an
driving field, which has been introduced in@13# to study the
problem of the electric discharge in disordered dielectric s
tem.

V. CONCLUSIONS

We have introduced and studied a model for the dynam
of fractures in a quenched random medium. The model
hibits interesting properties, for example, a strong reduct
of its fractal dimension with respect to the case of a dom
nating thermal noise~stochastic dynamics@9#! and a rough-
ness exponent for the chemical distance whose value se
to be independent on the model parameters. Moreover,
fractal dimension of the fractures depends continuously
the material properties, represented in the model by a pow
law distribution of quenched disorder with a tunable para
etera. This is, from an experimental point of view, reaso
able. In a situation in which thermal fluctuations of the latti
are irrelevant, the only source of noise, and thus of frac
properties, in the growth process is the intrinsic quench
disorder of the samples~impurities, vacancies, etc.!. Our
model, however, is still too idealized to allow a quantitati
comparison with experiments.

It would be interesting to compute analytically the frac
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dimension of this model by using the fixed scale transform
tion ~FST! @21# approach, after having mapped its dynam
onto a stochastic one, with the RTS method. The mappin
in fact possible, but the approximations one has to use in
FST approach give rise to quite poor numerical results
reported in a longer paper on this subject@20#.

The model can be further generalized. A research dir
tion we are presently following concerns the unification
the low-temperature~deterministic, extremal dynamics wit
quenched disorder! and high-temperature~stochastic dynam-
ys

e

.

-
s
is
e
s

c-
f

ics with thermal noise! regimes by the introduction of a tem
peraturelike parameterT that can tune the transition betwee
the two regimes@22#. This could represent a further ste
toward a more realistic description of fracture propagation
solids. One interesting property of this generalized mode
that in the high-temperature limit, the level of approximati
of the FST method becomes excellent@21#. This could allow
us to get a good estimation of the low-temperature frac
dimension by an extrapolation of the values we get in
high-temperature case.
s.
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